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Abstract

Collision-free optimal motion end trajectory planning for robotic

manipulators are solved by a method of sequential srediant restorntion

algorithm. Numerical examples of a two desree-of.frnedom (DOF) robotic

manipulator are demonstrated to show the excellency of the optimization

technique and obstacle avoidance scheme. The obstacle is put on the

midway, or even further inward on puqrose, of the previous no-obstacle

optimal trajectory, For the minimum-time purpose, the trajectory grazes

by the obstacle and the minimum-time motion successfully avoids the

obstacle, The minimum-time is longer for the obstacle ivoidance cases

than the one without obstacle. The obstacles avoidance scheme can deal

with multiple obstacles in any ellipsoid forms by using artificial potential

fields as penalty functions via distance functions. The method is promising

in solving collision-free optimal control problems for robotics and can be

applied to any DOF robotic manipulators with any performance indices and

mobile robots as well. Since this method generates optimum solution based

on Pontryagin Extremum Principle. rather than based on assumptions, the

results provide e benchmark against which any optimization techniques

can be measured.

Key words Bang-bang control, optimal control, Cartesian space, joint

space, robotic manipulators, degree-of-freedom.

1. Introduction

The problem of increasing productivity, automated manufacturing,

and performing complex tasks in hazardous or remote environments can

be solved by robotic systems. Such systems have been applied to a wide

variety of industries which includes spray painting, welding, assembling,

material handling, highly risky work and remote control jobs+ As pointed

out by Holcomb and Montemerlo [l] and Lemur [2], remote control robotic

systems will be developed in the future space stations. Also as well-
known, with the demand of increasing productivity and industrial

automation, the problem of controlling the robotic manipulators has

received a great deal of interest in the field of automated manufacturing.

1.1 Research Objectives

One of the focal points in robot design lies in the computation and

control of the motion of the manipulator. In order to mike sure that the

manipulator is able to execute a special task most efficiently for human

beings, it is important that the manipulator performs frc_a initial states to

designated final states in an optimal way under collision avoidance

concern, Control on robotics can be separated into two m_or categories: I)

trajectory planning, 2) trajectory tracking. Various optlmel controllers

need to be devised in the trajectory tracking problems which are not the

subjects in this articla, Trajectory planning is not only the determination of

the path of the and effector. Trajectory planning generates a specified

motion of time history from initial states to fins[ states, Motion plannlni

does not necessarily require optimization techniques but extra excursion of

tha robot Is just not cost-efficient and can cause more potential collision

problems. Obviously, the minimum.time trajectory Is of particular interest

since the productivity In automation is maximized. Various performance

lonll, for example: distance, energy or titan-energy combination, Ire also

applicable, Various concepts for the study of optimal control of robotic

manipulators have been studied for this purpose,

1.2 Previous Work

One of the pioneered work is done by Kshn and RoOt [3]. The highly

nonlinear manipulator dynamical equations of motion are linaarlzed, tn

approximate bang-bang solution bzs been developed to the suboptimal

feedback control problem,
Gilbert and fohnson [4] have developed a path plannin s schema in

which the obstacles are avoided via an infinite Penalty function generated

from distance function. In their study, the nonlinear dynamic equations

are approximated by linear subspace functions which are chosen as

piecewise polynomial splines. In their examples, distance constraints are

is made strictly convex by approximating its boundary by arcs of certain
curvature; obstacles are illumed to be convex lets; the complex distance

fiodin$ minimization problem within the optimal control problem is not

fully described, In the optlmization technique, more than one optima can

be drawn at the same case,

Based on Pontrya$in extremum principle, the tlme.optima] motions

of various types of robotic manipulators have been investigated by

Geering, Guzzella, Hepner sod Under [5] as classified by cylindrice],

spherical robots, and a robot with horizontal articulated arm with two

links, In the analysis of the time-optimal control problem, the bang-bang

control solution satisfies the Pontryagin extremum principle and the study

has been made for unconetrainted trajectories. In their examples, two links

tntercross each other in the planar two-link manipulator.

Due to the difficulty of highly nonlinear robot mathematical model, a

near-optimal control algorithm based on Pontryasin extremum principle
and Riccati formulation bag been presented by Kim, Jamshidi and

Shahinpoor [61. The algorithm reduces the original nonlinear equation set

into a linear one by a parameter sensitivity method and P-D controller is

used to solve the linearised model.

Ozaki and Mohri I71 has developed the study of collision-free joint

trajectories along a given path with some physical constraints such as

manipulator dynamics, obstacles avoidance, joint velocities and input

torques by formulating artificial potentials into the planning problem for

constraints using linear programming algorithm to minimize the error

between present and desired trajectory, in which, the nonsmooth time

functions were approximated by cubic spline functions.

The technique of dynamic programming has also been a popular

solution method to many investigators in the field of robotic manipulators

research. Based on dynamic programming, Vukobrarovic and Kircanski [8]

have determined the energy.optimal velocity distribution of the

manipulator end-effector for a prescribed path in the workspaee subject to

the forces/torques constraints. The given traveling time needs to he

discretized in their study.

Singh and Leu I9] have formulated and solved the optimal trajectory

planning ss an optimal control problem by a path parameterized method of

dynamic programming under the constraints of the joint forces/torques
and velocities. Bang bang control has been generated for minimum time

problems without obstacles avoidance concern.

In order to Implement dynamic programming approach, Shin and

McKay [10] have studied trajectory plannln s of robotic manipulators using

parametric function and its derivative to reduce dimensions in stale spice

which finds thu positions, velocltius, accelerations, and torques of the

problem by minimizing the cost of the parameter of moving a robotic

manipulator along a specified geometric path subject to input torque/force

constraints without obstacle avoidance concern. Along a pre-selected

geometric path, for quadratic velocity bounds, and piecewtse analytic

geometric path constraints, the minimum.time control problem has been

studied by Shin and McKsy ill] with the phase.plane techniques In

Cartesian space which has to be converted Into joint space by Interpolation.

Under the assumption that the path is given as ptrametefized curve, they

hive also determined s near.minimum time geometric path for the study

described above which minimizes approximate lower traversal time

bounds using maximum velocity bounds [12], Their techniques are limited

by parameterlzation,
Bobrow, Dubowsky, and Gibson [13] have studied tha problem of

minimum-time trajectories along arbitrary pre-planned spatial paths by a

special technique in which the actuator torque bounds am assumed to be

functions of the robot's currant po!ition and velocity. This technique

cannot handle the case when tha feasible resions in the phase plane arc

not simply connected, The idea of the alton-optimal solution is based on

choosing the maximum accelerstion/dcce]eretion to make velocity as large

ss possible at every point without violating constraints. The difficulty II

finding multiple Iwttching points for time-optimal problems. Dubowlky,

Norris and ShiIler [14] have devised s time optimal trajectory planning

scheme with obstec]a avoidance consideration via a CAD approach in which

the minimum distance to obstacles is found from software OPTARM II by a

table of various geometric shape. The penalty function for obstacle

avoidance needs to have a cberactarist[c of more effective weighling and
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dramatic steepness. The technique c•nnot b¢ easily extcnded to solving

optimal trajectory planning for other performance indices and constraints.

Based on the same assumption, Rajan [I5] has devised a

parameterized path method for the minlmum-timc problem in which the

cubic spline paths are par•metcrized and optimized locally by an herative

scheme. The optimization procedure stops until the minimum-time path

comes close enough to the previous path while using Bobrow's algorithm

for inner minimization and varying the path for outer minimization. The

algorithm cannot be effectively applied to the planar movements of a

manipulator with obstacles in the workspnce. The weak points of the

algorithm are on the premises that the minimum time path is smooth and

a smooth curve is welt approximated by splines.

Sahar and llollerbech [16] have devised • method based on state-

space search tree representing all possible solutions, and searching for the

best one by using a Symbolic• Lisp Machine for time-minimum criterion.

The algorithm is a logical approach but not a mathematical approach which

is not suitable for routine offdine trajectory phnnlng due to the

complexity of computation, ............

Luh and Lin [t7] have devised a kinematical approach which

assumes the path consists of a sequence of Cartesian straight line segments

and constant limits on Cartesian velocity and acceleration are known a

priori without considering the dynamics of the arm.

Weinreb and Bryson [18] have presented the Adjustable Control-

Variation Weight (ACW) algorithm for the minimum-time control of • two-

llnk robotic arm through choosing controls subject to the actuator

constraints. In their examples, the two links of the planar manipulator

intercross each other. Meier and Bryson [19] have developed an algorithm

for solutions of time-optimal control problem of a two-link planar

manipulator which contains solutions for two-point boundary value

problem of constrainted motion between two endpoints.

Zhang and Wang [20] have investigated a collision-free time-optlmal

control psoblem of a two-link planar robotic manipulator by applying the

method of global linearization transformation in joint space configuration.

As • result, the nonlinear equations of motion are transformed into an

equivalent linear model and an approximate explicit expression has been

olXained for the case of minimum-time control of a two-link planar robotic

manipulator with two-dimensional planar geometrical obstacle avoidance.

In their example, radius of the circle obstacle is not shown.

Bobrow [21] has continued the study of optimal path planning using

minimum-time criterion with obstacles avoidance consideration in which

the actuator torque bounds are assumed to be functions of the robot's

current position and velocity, where the Cartesian path of the end-effeclor

is represented with uniform cubic B-spline polynomials. The obstacle

avoidance is enforced by ensuring the distance between she end-effector

and the obstacle which was evaluated by stepping small increments of the

path parameter.

Wang [22] has devised the numerically approach of using sequential

gradient restoration algorithm to solve Bolas classical optimal control

problem on robotics without linearisation or psrameterization, including

the analytical time-optimal io, fi(ions of a two-link manipulator and/or

actuator constraintcd cases, in which the implementation can be extended

into obstacle avoidance consideration.

1,3 Overview

We can see that numerous attempts have been made to find

collision-free optimal motion of a robotic manipulator without great

suCCess. All of the aforementioned investigations are limited in one way or
another.

Collision-free optimal control problems for robotic manipulators are

difficult due to the two-point boundary-value problem which involves, in

addition to the optimality conditions, the kinematical and highly nonlinear

dynamical equations of the system, the obstacle constraints, tI_e ll_mits

imposed on controls, and the satisfaction of terminal conditions. Generally

speaking, analytical solutions for classical optimal control problems with

equality and/or inequality constraints are not possible. Therefore,

numerical method is resolved. Numerical methods and computer routines

are avaihble nowadays ranging from simple integration to TPBVP and

pptimi_tion at s low price [23|.

To solve constratnted optimal control problems, a restoration phase is

needed at the end of the gradient phase [24]. The collision-free motion

planning problems of robotics can be formulated as a classical optimal

control prob]em and solved by sequential gradient restoration algorithm

[25]. Collision can be avoided by continuously controlling the closest point

on the arm to the obstacles using virtual potential fields as penalty

functions via distance functions [26].

1.4 Present Modeling

As pointed out in recent research, owing ro the difficulty of solving

TPBVP and highly nonlinear dynamic equations, the classical optimal

control problem is mostly approached hy approximation (linearisation,

parameterization, modification) which more or less replaces the original

optimal control problem into the assumed onc. As in those study where the

nonlinear dynamic equations or the two-point boundary value problems

are linearized or parameterized, the solutions generated based on those

assumptions are not necessarily good approximations to the original ones.

The intention of this research is to present a numerical approach for

determining the collision-free optimum motion of robotic manipulators, a

method to solve classical optimal control problem without any

modification, linearization or simplification. Solutions including robot

positions, velocities, accelerations and force/torque in both Cartesian space

and joint space which satisfies the Pontryagin extremum principle are

obtained by solving the manipulator klnematlcaI and d-ynlmical equations

with optimality conditions. For given initial and final eondiiions, under the

physicaFcouditions _m_poscd : on coniioi" in joint %aC:e and obstade_

constraints, the continuous t/me-history of the positions, velocities,

accelcrafions, torques/forces and the optimal collision-free motion of a

robotic manipulator in minimum time are determined.

Applications of sequential gradient restoration algorithm occur in

various branches of science and engineering. With particular regards to

aerospace engineering, various problems of coplanar and noncoplanar.

orbital and suborbital space flight [27, 25, 29] and atmospheric flight in a

wind•hear [30, 31, 32] have been solved by the sequential gradient

restoration algorithm. Also, the same technique has been successfully

employed in the thermofluid science [33, 34]: In :general; sequefitia[

gradient restoration algorithm has proven to be a very promising

algorithm in solving engineering optimal control problems [35, 36].

1.5 Advantages over Existing Techniques

To solve collision-free optimal control problems on robotics with

constraints, we need a numerical method which has the following

advantages:

1) able to solve TPBVP which is essentially the core of the problem [6, 8.

10, 11, 12, 13, 14, 15, 21]: In fact, TPBVP can be solved by shooting

method and relaxation method or method of particular solutions. TPBVP is

involved in the first-order exact optimality COhesions derived from
calculus of variation.

2) able to solve highly nonlinear dynamic equations without linearisation.

parameterization or simplification [3, 4, 6, 7, 10, 11, 12, 17, 20, 21]: Any

modification by line•rization ot simplification directly or indirectly

replaces the original problem. The drastic approximation leads to

significant error and unsatisfactory, unknown effect to the optima and the

obstacle avoidance. For example, a collision-free optimal solution can be

declared only when there is not another more optimal solution.

3) able to solve any robotics formulation regardless number of joints or

DOF [15, 17, 18, 19, 20].* A technical approach should not be limited by the

number of joints or DOF of robotics. Any dynamic systems can be
formulated from state functions point of view and solved as control

systems regardless number of dimensions.

4) able to avoid the obstacles toward optimization direction without any

onneceseary excursion [5, 7, g, 9, 14, 15, 20, 21]: Collision avoidance should

be achieved in a most efficient way, in terms, an optimal way, without

requiring extra journey of the robot arm. The weighting effect and

clearance between trajectory and obstacle should be specified by only one

parameter.

5) able to solve general constraints of robot motion planning: On trajectory
planning, we have stale constraints, control constraints, or a combination of

the above. Obstacle inequality constraints, control inequality constraints

can be transformed into equality constraints.

6) able to solve any terminal conditions, any perform•nee indices [3, 13,

14, 15, I$, 21]: In various applications, various performance indices need

to be implemented. For example, time, distance, energy or s combination of

the above. Point to point task has different initial and final states in
applications.

7) has the potential to fully utilize computer power as the computer

industrie! grow in the near future: Several years from now, computers can

be many times faster in CPU. We don't reject any ideas which consume

more CPU time then we can afford today. On the contrary, we encourage

numerical method that fully utilizes the modern scientific computing

concepts, Provided we have infinitesimal small stepsize and infinite digits,

and we have sufficient CPU time on compusers, this calculus of variation

approach generates solutions which satisfy exact necessa O, conditions.
Sufficient conditions can also be checked.
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1.6 Drawbacks
There are certainly some drawbacks: 1) Minimum distance finding

problem within the optimal control problem at each time stage is difficult.

For more complex manipulators and general obstacles, the minimum

distance can he found through optical devices or solid modeling techniques.

In common sense, a human being has to sense (by eyes1 obstacles and

potential of collision before be/she can think about avoidance. 2) Due to
the consumption of huge amount of C-_U time, the method is good for off-

line programming but is not yet ready for real-time, on-line applications.

This is a ttadeoff for a new promising technique.

1.7 Contents
A brief description of the dynamic systems and constraints am given

in section 2. Section 3 contains the obstacles avoidance schemes. Section 4

contains the optimal control theory. Section 5 contain| the sequential

gradient restoration algorithm. In Section 6, numerical examples of a two

degree.of-freedom robotic manipulator are demonltrated. The insight of

collision-free minimum-time motion arc shown in captions and tables.

Finally, discussion ts in section 7, conclusion and prospective research am

presented in section g. Appendix A illuttratetJ the kinematics of a two-

link manipulator example.

2. Dynamic Systems and Constraints

The highly nonlinear dynamic equations and inequality control

constraints and/or inequality state constraints are also the main

difficulties of optimal control on robotics.

2,1 Dynamics

Under the assumption that the links are uniform rods of mass mi at

the mass center, of moment of inertia II, of length [i, respectively, i is the

number of the link. The gravity g is acting parallel to the negative y-axis

direction. The dynamical equations can be derived by means of Newton-

Euler (Lagrange-Euler) equations [37, 3g, 39] or symbolic method [40] and

expressed in general as:

2.2 Control Systems and Inequality Control Constraints

Robotics dynamic system can be formulated in two ways:

2.2.1 Kinematical Formulation

Kinematical formulation is practical in most cases, specially when the

model reference dynamic parameters are not known in advance. For

example, the payload is never known ahead; or for safety reason that the

inertia force caused by acceleration of the robots shall be limited. In

kinematical formulation, the control system is as follows:

=o (5)

_= a (6)

O, m. a are vector of state variables, Once the state! In joint space of the

manipulator are known, we can compute the joint torques which are

required to balance the reaction forces/moments acting on the links. The

physical inequality constraints Imposed on the robot in this study are joint

acceleration bounds [2.0]. With these constraintt, we can limit the torques

which are related to the joint space configuration. [n terms,

ItaliC, (7)

Via the following variable transformation, the joint acceleration can b¢

limited with|n the bounds

a=Csin(u), (8)

C is vector of upper bounds of the absolute acceleration in joint spar*, uiz

vector of the new control variable.

2.2.2 Dynamical Formulation

If we know the model reference system in advance, in dynamical

formulation, the control system is as follows:

"¢ =M(0)a + C(O,co) + G(0) ( I ) _ = co (9)

where 'I; is the vector of applied torques/forces, M (0) is the inertial matrix

terms of the manipulator, C(O,co) is the vector of centrifugal and Coriolis

terms, G(0) is the vector of gravity terms. For example, a two-link

manipulator in Fig. I. [16]:

Y
t

_0,1

H
0,0 l,O

Fig.I. Two-link robotic manipulator

Link 1 of ml,lt.ll

Link 2 of m2, l2, 12

(ll+]2+(mll12+m2122)/4+m2112+m21112cos02 I2+ (m2122)/4 + (m21 ll2c°sO Z)/2

M(O)=_ i2+(m2122)/4+(m21l12COS02)/2 12+(m2122)/4 I 2 )

(2)

f -m21ll2sinO2(co2)z/2-m21z|2sin02(c°l)(m2)

c(o,,o)_, m21:_sin0z(,0t)2/2 )
01

(m 212cos(01+02)/2+11 (m l/2+m21cos01 (41
G(O):g_ m 212c0s(01+02)/2 J

One can see that these highly nonlinear terms are functions of the

joint velocities and angles. Oi, coi, ctiare relative angle, angular velocity, and

angular acceleration of link i respectively.

= M-l( "[ -C(O,o) - G(O) ) (10)

O, co, cz are state variables. In this formulation, we assume the dynamic

parameters in matrices M,C,G, are known. The matrix M is always both

"symmetric and positive definite" [3g], therefore always invertible. The

physical inequality constraints imposed on the robot in this formulation

are joint torque/force bounds. With these constraints, we can limit the

torques in the actuator space configuration. In terms,

I_ls C, (111

Via the following variable transformation, the joint torque can be limited

within the bounds

_i=Cisin(ui) ' (l 2)

C is vector of upper bounds of the absolute torque in actuator space, u is

vector of the new control variable.

2.3 Equality Constraints

In some cases, the end-effector has to follow a specified path, or the

orientation of the arm in the motion is specified and fixed, for example, the

robot arm is holding a Hash light moving along a specified path, then, the

degree of freedom is reduced by the number of constraints. One or more

state constraints have to bc added in Cartesian space, then converted into

joint space. The system is solved with replacement of the algebraic

equation into the state variables according to the constraints.

3. Obstacles Avoidance Schemes

By definition, obstacles can be avoidable or unavoidable for a fixed

configuration. Configuration has to be fixed in one task to avoid excess

excursion and changing kinematics. For examples, in Fig. 2., the obstacle is

away from the robot chassis but within the work envelope. That is
considered as avoidable, In Fig. 3., obstacles are too close to the robot and

there is no space for feasiblly moving the robot arm through the obstacle

environment. This is considered as unavoidable.

For simplicity, each obstacle is put into an ellipsoid. It is a |lade

wasteful to put an obstacle which is not necessarily in ellipsoid shape into

an ellipse. The advantage is the ellpsoid parameters can be changed to
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shtpen the oral into the figure of the obstacle without wasting too much

space, Collision avoidance can be achieved by continuously controlling the

closest point on the arm to the obstacles. P

g 9

_O,l .O,l

Oblttcls

0,0 1,0 X 0,0 1.0 x

Fig. 2. Avoidable Obsttcie Fig. 3. Unavoidable Obstacles

3.1 States Inequality Constraints

Let Qt denotes the i-th obstacle ellipsoid function among Ill obstacles,

The obstacle constraint is:

QI = ao(x-xo) 2 + b0(x'x0)(Y'Y0) + c0(y'yo) 2 + f0 = 0 (l 3)

For collision avoidance, it is a most that at all times, for the closest point on

the arm,

Qi _ 0 (l 4)

3.2 Distance Functions

Distance function Dt is defined as the function Q|(x,y) from the

closest p¢int (x, y)on the arm to the i-th obstacle.

The position on each link can be identified by

X=Xl +X(X2-XI); y=yl +_(y2-yt) (15)

in terms, x. y are functions of a parameter X. xt, Yt, x2, Y2 are Cartesian

coordintes at end points of the links.

Substituting (x, y), Ql(x, y) becomes a function of parameter L To

find the closest point from the arm to the obstacle, we take differentiation

and find minimum Qiversus _.

__Pa_
d_. -0, (16)

then, D i iS cho0_en among the closest points on links to the obstacle, ]n

most of the avoidable obstacle case_, t_e c_[oseitpoint bappent to _ on the

forearm at end-effector.

When DI =0, it means the arm touches the i-th obstacle at the closest

point. When Dt is infinitesimally small, it means the arm grazes the i-th

obstacle.

3.3 Virtual Potential Field Penalty Function Method (Pl)

The penalty function Pl is defined at

SI = eap(Dt/ai)- l (17)

l

PJ = STi S I Z g (18)

Pt= F SlOe (19)

ai Ii a •mill number which denotes the dramatic steepness factor between
the trajectory and the i-th obstacle where the penalty becomes octave, r is

a huge number on the edge of the precision boundary that causes

computer overflow, e is a tidy number on the edge of the pre¢-tl|on _

boundary that causes computer underflow. 7"h,, merit of this Infinite "

penalty function It by choosing a small number el. one can define how

close the trajectory is allowed to clear the i-th obstacle, By increasing the

value eh one can supplant the steepness of the penalty function to the

trajectory will never get into the obstecIes* forbidden area. At D increases.

P sharply decreases, i.e. Itlmost no penalty in farmer distance: as D

dccreues. P dtamaticnUy increases, i,e. a sudden increase of a penalty

hjrrler in the goal function for obstacle tvoidancn, As soon u P dominates

the |m| function, the problem changes from t minimum.goal one into tn

obstacle avoidance one. See Fig. 4, its following:

Int_nite

0.58

D
a=lO

Fig. 4. Penalty function versus distance function diagram

For this optimal control system, we have formulated O, m, o, as state

variables x; usa control variables. For the time-optimal problem, the

performance index is:

_[ (20)I=n+ n P,('O dx

;z=o

m

P,(_)= Y_Pl(_) (2l)
i-t

Boundary conditions are initial states x(O), and final states x(l) of specified

values. Once the states and the controls are computed, the required

reacting torques Z can be solved from Eq. (1).

3.4 Violation Compensation Penalty Function Method (P2)

The penalty function Pt is defined as

Pt = 0 Diz 0 (22)

Pi = - (DI - e)3 Dr<0 (23)

e is s small number. This penalty is a negative compensetion function via

the distance function. The merit of this penalty function it to force the

violation of the obstacle constraint one as the negative sign indicates.

For this optimal control system, we have the same State variables

and control variables as above. FOr the time-optimal problem, the new

performance index is:

I='n÷_ n Ps('t) d1: (24)

P,(_)= _W i Pt(_) (25)
l=!

W I is I weighting factor for the corresponding penalty fimctJon,

3.$ Vurleblne Trnueformetlon Method (P3)

For collision avoidance, by introducing a new variable 7,.

Qt_ffi sO(X-tO) 2 + bO(X-Xo)(Y'Yo) ÷ cO(Y'y0)2 + fo = _2 (26)

| = | aO(x-xo)! + bO(x-xo)_/2+bo(y-yo)_/2 + ¢O(y-YO)_ ]/z
(27)

where !. _,. ire the time diffrentlation of x, y, We add one or more

differential constraints to the control system. For this optimal ccmttol

lyJtem, we hive formulated 0, re,ca, gel sURe variables 1; eel COllttol

variabIu. For the time.optimal problem, the perfnrmalw..e ir_lna is: I ** n
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3,6 Time Sealln I

[n the above systems, time has been normalized from tinitlal=0 to

tflns|=l via the following transformation: t---_'_, i.e. , dt--_d'¢, n is z

parameter which represents the final time.

3.7 Minimum Distance Problem

For the minimum-distance problem of the end.effector in Cartesian

space, the performance index can be replaced by:

l =it n (vx2+ vy2)tl2d_+[l n P.(_)d, (2S)
Jo d o

3.8 Primal Formulation

Optimal control has the characteristic of duality [41, 42]. In this

study, the sequential gradient restoration algorithm is employed in

conjunction with primal formulation,

4. Optimal Control Theory

The optimal control problem [43] is described in general as follows:

With respect to the vectorial state variable x(t), vectorial control

variable u(t) and the vectorial parameter n, the problem of minimizing a
functional

1 = fo t f(x,u,,_,t)dt ÷(h(x,n)lo+fg(x,n)h

subject to differential constraints:

(29)

- *(x,u,,U) =0, 0 t t t I, (30)

initial conditions:

[m(x,e)I0=0, (3 I)

and final conditions:

IV(x,n)li_0. (32)

where f, h, g, are scalar functions, and 9, ¢e, ¥ are vectorial functions of

specified dimensions, t is a independent variable. The subscript 0 denotes

the initial point, and the subscript I denotes the final point.

Optimality Criteria

By introducing the Lagrenge multipliers, the problem shown above

can be recast as minimizing the augmented functional .r

(33)
J=I+L

subject to Eqs. (30-32), where L it the Lagrsngian functional

L = _'T(x'¢(x,u,_,O)dt + (oT¢o)O÷ (JaTv/)[ (34)

The symbols _.(t), o, p denote Lagrange multipliers of appropriate

dimensions associated with the constraints, The superscript symbol T

denotes the transpose of the martin.

The first-order optimality criteria originated from Pontryagin

Extremum Principle for Eqs. (29-34) can be derived from Euler equations

in calculus of variation as:

{. - fx + txT.=0, 0 x t s I, (35)

f. - ¢.X=O, 0 f t s l, (36)

f_ (f_-tx_.)dt + (h_t + o._ta)0 + (as + Wxg)l=O, (37)

(-x+ hx + _o)o=0, (38)

(_ + _ + Vxp)t=O. (39)

In terms, we seek the functions x(t), u(t), n and the multipliers ;t.(t), o,

p such that the feasibility Eqs. (30-32) and the optimality criteria Eqs. (35-

39) are satisfied to certain numerical accuracy.

g. Algorithm

The sequential gradient restoration algorithm_ in either the primal

formulation or the dual formulation, is an iterutive technique which is

constructed by a sequence of two-phase suboptimal cycles. Each cycle

includes a gradient phase and a restoration phase. In the gradient phase,

the value of the augumented functional is decreased in one step. while

avoiding excessive constraint violation, In the restoration phase, the value

of the constraint error is decreased in one or multiple steps, while avoiding

excessive change in the value of the functional. In a complete gradient-

restoration cycle, the value of the functional is decreased, while the

constraints are satisfied to a pre-selecred degree of accuracy. Therefore, a

sequence of suboptimal solutions is generated. Each new suboptimal

solution is an improvement of the previous one from the point of view for

the value of the functional to be minimized. The optimal solution is

reached when the optimality error and the constraint error are both

satisfied to a certain accuracy. Schematic diagram is shown in Fig. 5:

g

m

g
Let x(t), u(t), n denote the nominal functions; let _(t), 7,(t), _, denote

the varied functions; let Ax(t), Au(t), An denote the displacements leading

from the nominal functions to the varied functions. Under the assumption

that the displacements Ax(t), Au(t), &n are linear with stepsize el, where ct >

O; and A(t), B(t). C denote the displacements per unit stepsize. Then the
following relations can be used for iterations:

x'Ct) = x(t) + Ax(t) = a(t) + aA(t) (40)

u'(t) = u(t) + An(t) = u(t) + c_B(t) (41)

=n +/,n=n + c_C
(42)

Thus, each iteration of the gradient phase end the restoration phase

involves two distinct operations: (i) the determination of the direction

functions A(t), B(t), C, and (iS) the determination of the stepsize of variation
0L
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From (40-42) and constraint conditions (30-32), one can derive the

fol]owlng rel•tlons from first order variation:

- ¢,xTA - tuTB -¢_Tc + Dr(_t-t) = 0, 01 t _. 1, (43)

(O=,xTA + ¢oxTC + Dr(o)0 = O, (44)

(_fxTA + _xTc + Dr_I/)l = 0, (45)

and from Eqs. (40-42) and first-order optimality criteria (35-39), one can

derive the following relations from first order variation:

{ - Dgfx + CxX = O, Ol t s I, (46)

B + Dgf_t - ¢_X= 0, 0x t i 1, (47)

C * f_ (-**X)dt + (,_o)0 + (V_)t + Dd f_ f#t + CO_)0 *Cg_)t ] = 0,

(4s)

(A - 7. + oba + Dihx)0 = 0. (49)

O. + YaP + Dtg_! = 0, (50)

where, in the gradient phase, D e = I, Dr = 0, (51)

in the restoration phase, Dg = 0, Dr = 1. (52)

The above linear two-poim boundary-value problem [LTP-BVP] can

be solved for the direction functions A(t), B(t), C, by the method of

panlcuhr solutions [44, 45].

Slepaize

EqST (40-42) define one-pararaeter functions of the stepsize _ For

this parameter, the functionals I, J, P become functions of a as following:

r = I'(a) Y = I(,x) P = P(ct) (53)

Then, bisection technique is used for the one-dimension search to

find the stepsize, starting from reference stepsize tag in gradient phase,

until (i)

Y(a) < Y(o), P(cx)< P., (54)

P. is a preselecled number, not necessarily small; and starting from

reference stepsize % in restoration phase, until (ii)

P(c0 < P(o) (55)

In • complete, successful gradlent-restoration cycle, the following

condition must be satisfied or the cycle is restarted with reduced stepsize.

IS< li-I (56)

where li denotes the value of the functional (29) after current cycle, li-t

denotes the value of the functional (29) after the previous cycle.

Updating suboptimal solution schemes

Once the direction function A(t), B(t), C, and stepsize ct are solved, the

states, the controls, and the parameters are updated according to Eqs. (40-
42).

Summary of Algorithm

Let P be the square norm of the error associated with the feasibility

Ikla. (30-32), and Q be the square norm of the error associated with the

optimality criteria Eqs. (35-39), then

P = ]_ N ( t-#_(Ll + N(ro)O + N(_)I (57)

]2 fl N(fu - ¢=7.)dtQ= N(_ - fat + ¢x_.)dt + 0

+N[f_ (ft-t_XMt + Con+ o_)0 + ($. + W..u)t]

+ N(-_. + hx + eexo')O * N(X + _ + 91_)1, (58)

where, N denotes quadratic norm operation.

Thus, numerical convergence for optimal solution can be declared

when

P _ Cl, (59)

Q s c2, (60)

el,e2 are preselected, small, positive numbers.

The algorithm is started from providing nominal functions of u(t),

and n. The nominal functions can be provided arbitrarily, but good

nominals help convergence. The nominal controls are provided with a

standard shooting method of Modified Quasilinearization Algorithm,

followed by solving the nominal states based on nominal controls, to some

accuracy of terminal conditions.

Then, the restoration phase is st•ned. Eqs. (43-45) are solved with

(52) and search of stepsize in restoration phase. The one or more iteration

restoration phase is completed only until Eq. (59) is satisfied. Then, the

gradient phase is started. Eqs. (46-50) are solved with (50 and search of

stepsize in gradient phase until Eq. (60) is satisfied for only one iteration.

The restoration phase is started again. Thus, a sequence of suboptimal

solutions is generated. Each new solution is an improvement of the

previous one from the point of view for the value of the functional to be

minimized. The optimal solution it reached when lneqs. (59-60) are both

satisfied.

6. Numerical Examples

Numerical examplel for tlme2optlma] controi with obstacles avoidance

scheme= of a two-link robotic msnlputitor are shown in this section. "]'he numt_icatl

and maalytlcal solution= of time-optimal control without obetaclet can be refuted to

[22], The following phyalfal param¢te_ Ire taken from Aaada [46], $thaf and

Hol]erbaeh [16] and 2_ang and Wang [20 I. The obstacle i= pat on ",he midway, or even

further inward, of the previous no-obetacle optimal trajectory on purpose. The

algorithm can be applied to any degree-of-freedom robot= with arbitrarily Liven

physical parameters and boundary conditions.

In joint spsce,

initial position (01, 02)i = (0.23, 0,35) rad.

final poaitinn (81, O2)f = (0.8205, 1.6208) rad.

initial velocity (eal, m2) i = (0.0, 0,0) rad/=ec,

fl_al velocity (=el, 032) f = (0.0, 0.0) rid/ace.

acceleration bound= (CI, C2) = (0.5, 1.0) rad/(s¢c)Z.

gravity corn=ant g = 9.8 m/(aec)2.

Link I

mass ml = 50 kdh length I I . 0.5 m, moment of inertia [1 = 5.0 kg/(m) 2.

Link 2

mass m2 = 30 ks, length 12 = 0.5 m, moment of inertia ]2 = 3.0 kg/(m) 2.

The ellipu: obetac[¢ Is represented by the following equation:

Q = It0(a'xO)2 + bo(x'x0)(Y'Y0) + cO(Y-y0)2 + f0 - 0; where, fo * -(r0)2

The following lymboia are used in the tablet:

Pl: Virtual Potential Field Penalty Function Method

P2: Violation Compensation Penalty Function Method

P3: Variable= Transformation Method

E : Ellipse Obstacle. C : Circle Obstacle, when bO = 0

Table I. Comparison of Obetaclet Avoidance Schemes

(PI-C) (P2-C) (P3-C)

xo (m) o._ 0,5 0.5

.......................................................

YO (m) 0.76 0.76 0.76

ro (m) O.l O.I 0.1
.......................................................

IO 1.0 I .o l .o
.......................................................

b0 0.0 0.0 o.o

.......................................................

cO i .0 1.0 1.0
.......................................................

a (m) 10 .4 _

• (m) _ 3.Oxl0-4

.......................................................

W _ 0.5x1010

minimum

time (see) 2.914 3.071 d.337

*'" denote* du_e t= _ *aeh val_ rm th= ,rJlerne
2.137 _ i! the mlmmgm time withottt oblttcle avniden¢*:.
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T_U* t. co•sins tit* ImlSbt of ©um_ hermes8 two pemW hm_l_ methods

end the vsri_lm trsmformadmJ medical fee eir0in .he•tin (b0,,,0). CIrc_ ohetNis is

eeesirod at (0.$, 0.76) off' rsdLus 0.1. Vktoil pro•teal fhdd penalty _n_ hu aaly

oM persme_r und gem*rata jr•e-by tr•jemory, Viol•don co•pen•alms pumsity

Ibngden is dUTtcult to bsplmmte M a clear colL[siou avnldan_ schema owing to the

infinite counbllmtlee of two iNnmew*lm. Vs.•bias _andormalln method •voids

U_lLeU]u 8uccoss_uJiy ink is tuH) _)lNulimod when the I_bOt ]J •wily from LhO

ehetoeJl to it•arm ms* I*e*J egtlms,

a. Cempadm ot D_hNat t.eeeWe d IUBfee md C_IS O_u_elee,

P I (Xl) (l_) (Cl) (_)

:.o.!..2........I:..........0.::o..........o:2...........%?.............
:o.!..)......o::_......... _:_.,...........0.:::.......... .0:.?.............
::.!'.).......5............5............o.,............o:_..............
.,............1::.........._o...........!:o...........y,..............
_............%o..........2;,...........o.:o............%o.............
e0 5.0 1,0 1 .O 1.0

U (m) 10 .4 10 .4 10"4 |0"4

minimum
t_u (see) 4.332 $.530 $.9S1 2.914

J.lS7 m* is ,h,, mldmun m _t*et abemd* m,e_.

hi Table 2. the elssle •rid ellipse o_la avotdmco ere listed fee jigs-by-aids

mmpedmt As n_ aeo, mttpm (_0-0.2) b is_er in sis* tim Ch'du Us-0.1). Loq axis

ak_kwiss oriented. Beth El, CI have the mtme cemw inn•finn at (0.SI,is d$

0&a) _--is mmu dew to the _ tbm B2, (:2 whirls lay* the sums ,.,u,,. I_oe at

(0.$. 0.76). OwiM to the •tara _Nmm7 the obsess •voldsnce susu, the bI88ee the

Ohet_le Of the deg_ tha ob_uwis, dm _ tha minimum.time is. in mOeete_ .

Far the -.ate of inld, _e meelU _ampeads to the flm tlllp_ (RI) in Tubin 2. m.e

shown In Pip. &ll.

PIg. g Nmulm the optimal _ajectm7 in minimum time

PIg. 7 cents u- the Jolm ms81e p_d_in bs minimum time.

Ftl.. | e.o_ tim Joint vdNl_ _ in minimum _lm_,

I_|. 9 q_slns 1he joust acceleestlm _ in minimum _bae.

_]g. I0 _gi_ the _ _re_is in IJI_mMI tisN.

P_ II mmsiM the d_ _ P_b
in i_knll t|m_

Tab_ 3. _lmrbee d Dff_m_m lindim of Ckdo Okm_ke,

P 1 ((:1) (_/) (C))

n0 (m) t .0 t .0 1.0

YO (m) 1.o l.O 1.0

ro (m) 0.4 0.5 0.4

a0 1.0 1.0 1.0

b0 0.0 o.o 0.o

eo 1 .o 1.0 I .o
........... • ,, ..........................................

8 (m) 10 °4 0.$•10 .4 10 .4

minimum
,u,.e (me) 5.129 2.696 2.1)7

bt Tmbis $., the ekcle is moved to mmee Io_dm (1, t). lindiw d tim d.c_ is varied

m (C1, C'& C3)-(0&, 0.5, 0.4). I, C3 ome, ins ebAw, le is eutstde the west euvelep of d_

robot. Je the minimum-dine fee C3 is the same as the one wilbout obeu_le. The

milth_tmuheo is Imss_ u ate ebeteeJ• is b(jgw in CI, C2 _a_.

In (:3 _ ovin8 to the inftue_ce of the exisdn8 penalty Nnctiou, mete ere mn

cxrvle o_eH_pped at the _a_uc:tocT. OW curve _1 foe previous o_hu•l lrSjeetae?

witheet ohetscla avoldm_e i_loma, imothm' qm8 is 01_lmld traJoc_eey with 0he••lee

_oldxncz _Uam* and obeu_le is ouulde the week enveinp.

6.1 Ievare Ohetlele Avoidance

Xn Jeans qm_

kdtlmd peeJflon (111.02) 1 - (0._dU, 0.6 St) rnd.

pearl• _Jl. 82)f - (0.497. 0.855) rsd.

iniUal velozJs7 (el, *_)l " (0.0. 0.0) radlcou.

flml vek_ (mi, m2)F • (0.0. 0.0) fad/con.

Th* followl_ I nun _udy shows: the arm sUtrted near the edge of one side of the

ob_acle and e_ded nNr th• edge of tnoth_ side of" the obstacle.

Table 4. Severe Obstacle Avoidance.

(P]._) (P2-C)

aO (m) 0,667 0.66?
...................................................

YO (m) 0.667 0.667
...................................................

r0 (m) 0.1 0.1

ao t.0 1.0
...................................................

b0 0.0 0,0

eo 1.0 1,0

a (m) 10"3 m
...................................................

• (m) m 0.2x 10 "l

W _ 01_X 10_

m|eimu_

time (sen 2.800 2.911

lee denotes _ Is no I_b vad_m for c]_ i_.

1.00_ me is Lhe mJnlm_ rime without obe_cle avoiding.

AS we Ice, minim_-time control is not necessarily related to _lnimum-distance of

the e,nd.ofl'ecthr. The collision avoidance scheme has excellence to move around and

•void severe obstacle.

7. Discussion

The Insights of the merit of the optimal obstacles avoidance are

shown shove in Fig. 6-15. Ali the obstacle avoidance trajector;cs have the

following characteristics: l) grazing by the obstacle. 2) trying to achieve

previous no-obstacle trajectory at near bang-bang control for minimum-

time. (At least one joint bang-bang control is the solution for minimum-

time without obstacles avoidance) 3) achieving previous no-obstacle

optimal trajectory with collision uvoidance scheme in the cases of no-

obstacles. 4) being able to move around and avoid the severe obstacle,

Virtual potential penalty function method does not cause obstacles

constraints violation or over-constrained situation, is the one and only best

method. Violation cumponsation method is difficult to implement owing to

the two weighting factors which causes a little obstacle constraint violation

from time to time. Variables transformation method is over-constrainted

when the obstacles are away from potential collision. This discussion

matches the one in [4] even though the implementation of penalty function

is different. This approach also illustrates the experimental results for

optimization with inequality and/or equality constraints.

As we can see from the comparison tables, the minimum-time of

collision-free optimal trajectory is relatively depended on the size and

location of the obstacles. The jerk control can be overcome by achieving •

near optim•l motion in which the trajectory is farther away from the

obstacle and the minimum-time is longer.

More intensive research need to be done on minimum distance

finding through optical devises or solid modeling. Since the robot

mmnipulstor| are usually constructed by connected links, in most of the

cases, we can say obstacles avoidance for fixed configuration is equivalent

to the nnd-effector obstacle avoidance even though this statement is not

true in general, We have to solve end-effector obstacles avoidance bcforc

we solve other type of problems becanse the object is usually on the grip.

The numerical experiments have been done on IBM ASg000

mainfraim and VAX 8800, are also attempted to be done on Macintosh. The

CPU time for current research varies from 20 minutes (IBM) to one hour

(VAX). The accuracy also varies from machine to machine without very

much difference. As the computer industries are growing, the C"PU time or

accuracy is not a problem for future scientific comput#.ion.

The numerical results ate constructed by 100 cycles and 300

iteratious whichever reached first. The convergence is fast at early stages,

it slows down after the sub-optimal solutions come close to the optimal

solution. To save computation, one can set up lower limits for cycle,

iteration and CPU time. so near-optimal solutions will be generated based

on Pontryagin Extremum Principle.
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8, Conclusion

In this paper, collision-freeoptimal motion and trajectoryplanning

for robotic manipulators are solved by a method of sequential gradient

restoration algorithm. Numerical examples of a two degree-of-freedom

robotic manipulator are demonstrated. The obstacle is put on the midway,

or even further inward, of the previous no-obstacle optimal trajectory on

purpose. For trying to achieve previous no-obstacle trajectory, the

trajectory tangentially grazes by the obstacle and the minimum-time

motion successfully avoids the obstacle. The mlnimum-time is longer for

the obstacle avoidance cases than the one without obstacle. All the

numerical experiments indicate the obstacles avoidance scheme has the

same characteristics which allows the trajectory gets as close to the

optimal as possible but barely graze by the obstacle. The weighting and

effective point of the penalty can be defined by one parameter which

justify the closeness between the trajectory and the obstacle. The

trajectory will try to achieve optimiTostion under the obstacles barrier. This

is the most outstanding characteristic than other schemes to achieve

collision avoidance and also find the optimal motion without extra
excursion.

The obstacles avoidance schemes can deal with multiple obstacles in

ellipsoid forms by continuously controlling the closest point from the arm

to the obstacle using virtual potential fields as penalty functions via

distance functions. The algorithm is very promising in solving collision-free

optimal control problems for any degree-of-freedom robotic manipulators

with any performance indices and mobile robots as well. The minimum.

tlme motion is at least one joint bang-bang control or near bang-bang

control with obstacles avoidance, no matter the controls are imposed on

angular accelerations or on actuator torques. The minimum-distance

trajectory without obstacles is a straight line.

Since this algorithm generates true local minimum solution based on

Pontryagin extremum princip]e, rather than based on approximations, the

results provide a benchmark against which any other optimization can be
measured.

The perspective research is to investigate the result of optimal

solutions for robotic manipulators when the controIs are imposed on

actuator constraints, and/or with moving obstacles avoidance under

different performance indices; and model-reference adaptive optimal
feedback control.
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Appendix A: Kinematics of a Two-Link Robotic Manipulator

In general, the kinematics, dynamics, control and constraints study ot r

robot can be found in |37]. The kinematical equations are developed by

geometrical relationship between Cartesian space and joint space [38].

They can be expressed in general as:

Forward kinematic• x(t):Fl(O(t)) (61)

v(0=F2(e(t), go(t)) (62)

a(t)=F3(8(t), g0(t), a(t)) (63)

where x(t), v(t), and •(t) •re vectors of positions, velocities and

accelerations of the end-effector in Cartesian sl_tce. 0(t), re(t), and a(t) •re

vectors of angles, angular velocities and angular accelerations tn joint

space.

F are functionl. For a two-link pl•ner robotic manipehtor [40] (Fig.l.):

x (llcosel+12cos(et+eD
(y) :_.lt,inel+12sin(et+e2)) (64)

)=_ ltcosel+t2cos(Ot+0_l) 12cos(at+e2) (65)

(:;, y)= _ hcoset 12ens(e:+g2) Ac, t+o_ :

i'llcoset l:zcc_(el+g2) T go1_
"_llsinel 12sin(at+02) _(got+e_,,)2 ) (66)

Inverse kinematics O(t)aGl(•(I)) (67)

¢o(t)uG2(x(t), v(t)) (68)

a(t)=Gs(x(t), v(t)0 e(t)) (69)

G arc functions which depend on the configuration (like: dbow-down), For

• two-link robotic manipulator in elbow-down position (Fig.l,)'.

el=tan-l(x _ -1 bsine_
- tan (_, wherc, (70)

e2=cos-l(_) (71 )

(2)=i( 12cos(@1+62) 12,in(el+e2)_-llcosel-12coe(el+e2) -lisinel-12sin(8l+S2) )

. (:;)

(o,at+o._. Flt]2sino2_. -llcos61 -llsinOl ay

got2

, {]ll2cos02 I22 _ (got+(o2)2 ) (73)+_ -|12 -ltl2cosl_ 2
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